
Deriving the Explicit Guidance Equations

These are my notes to understand the powered explicit guidance algorithm from NASA. The original
can be found at https://ntrs.nasa.gov/citations/19660006073.

Coordinates
The vector ⃗𝑟 points from the centre of the planet to the spacecraft. We work in a rotating radial,
normal, circumferential coordinate system

𝑒𝑟 ≔
⃗𝑟

‖ ⃗𝑟‖
= ⃗𝑟

𝑟
, 𝑒𝑧 ≔

⃗𝑟 × ̇⃗𝑟
‖ ⃗𝑟 × ̇⃗𝑟‖

, 𝑒𝜑 ≔ 𝑒𝑧 × 𝑒𝑟. (1)

This essentially means we are using cylindrical coordinates where the cylinder is constantly rotating
such that the ⃗𝑟- ̇⃗𝑟-plane is the 𝑧 = 0 plane. Because of this the velocity ̇⃗𝑟 never has any 𝑒𝑧
component, but there can be acceleration in this direction, causing the entire coordinate system to
rotate. Furthermore this implies that dd𝑡𝑒𝑟 also only has components in 𝑒𝑟 and 𝑒𝜑, and to be more
precise only in the latter direction, because otherwise its magnitude would change. The explicit
terms for the time-derivatives of the base vectors are

d
d𝑡
𝑒𝑟 =

𝑒𝜑 ⋅ ̇⃗𝑟
𝑟

𝑒𝜑,
d
d𝑡
𝑒𝑧 = −𝑒𝑧 ⋅ ̈⃗𝑟

𝑒𝜑 ⋅ ̇⃗𝑟
𝑒𝜑,

d
d𝑡
𝑒𝜑 = −

𝑒𝜑 ⋅ ̇⃗𝑟
𝑟

𝑒𝑟 +
𝑒𝑧 ⋅ ̈⃗𝑟
𝑒𝜑 ⋅ ̇⃗𝑟

𝑒𝑧. (2)

The derivations are in Appendix A.

Velocity and Acceleration
The velocity ̇⃗𝑟 can be written as

̇⃗𝑟 =
d
d𝑡 ⃗𝑟 =

 (1) d
d𝑡
(𝑟𝑒𝑟) = ̇𝑟𝑒𝑟 + 𝑟 d

d𝑡
𝑒𝑟 =

 (2)
̇𝑟𝑒𝑟 + (𝑒𝜑 ⋅ ̇⃗𝑟)𝑒𝜑. (3)

Using this we can write the 𝑒𝑟-component of the acceleration ̈ ⃗𝑟 as

𝑒𝑟 ⋅ ̈⃗𝑟 = 𝑒𝑟 ⋅
d
d𝑡

̇⃗𝑟 =
 (3)

𝑒𝑟 ⋅
d
d𝑡
[ ̇𝑟𝑒𝑟 + (𝑒𝜑 ⋅ ̇⃗𝑟)𝑒𝜑] = ̈𝑟 + (𝑒𝜑 ⋅ ̇⃗𝑟)𝑒𝑟 ⋅ (

d
d𝑡
𝑒𝜑)

= ̈𝑟 −
(𝑒𝜑 ⋅ ̇⃗𝑟)

2

𝑟
𝑒𝑟.

(4)

Time
The current time is always 0 and the time at the target state is 𝑡. So the current position and velocity
is ⃗𝑟(0), ̇⃗𝑟(0) and the target position and velocity is ⃗𝑟(𝑡), ̇⃗𝑟(𝑡).

Rocket Engine Acceleration
The acceleration due to the rocket engine is 𝑎𝑓  where 𝑎 is the magnitude of the acceleration and 𝑓  is
the unit vector pointing from the rocket engine to the centre of mass of the spacecraft. Note that the
rocket engine is operating at constant thrust (constant force) 𝐹engine while the mass 𝑚 of the rocket
reduces (due to fuel consumption). With 𝑅 as the constant rate of fuel consumption we can write
𝑚(𝑡) = 𝑚(0) − 𝑅𝑡. The engine acceleration is then

https://ntrs.nasa.gov/citations/19660006073


𝑎(𝑡) =
𝐹engine
𝑚(𝑡)

=
𝐹engine

𝑚(0) − 𝑅𝑡
= 𝑎(0)

1 − 𝑡
𝜏

(5)

with 𝑎(0) = 𝐹engine
𝑚(0)  and 𝜏 = 𝑚(0)

𝑅 . Note that also 𝑣𝑒 = 𝑎(0)𝜏  where 𝑣𝑒 is the average exhaust velocity
relative to the spacecraft (often called 𝐼sp). The derivation for this is shown in Appendix B.

Net Acceleration
There are just two forces acting on the spacecraft - gravity and the thrust of the rocket engine. The
net acceleration is the sum of both

̈ ⃗𝑟 = − 𝜇
𝑟2
𝑒𝑟 + 𝑎𝑓, (6)

where 𝑎 is the acceleration due to the thrust of the rocket engine and 𝑓  is the unit vector pointing
from the rocket engine to the centre of mass of the spacecraft. Inserting this into Equation (4) gives
us

̈𝑟 +
𝜇
𝑟2

−
(𝑒𝜑 ⋅ ̇⃗𝑟)

2

𝑟
= 𝑎𝑓 ⋅ 𝑒𝑟. (7)

Pitch Steering
For the pitch steering we choose the Ansatz

𝑓 ⋅ 𝑒𝑟 = 𝐴+𝐵𝑡 + 1
𝑎
𝜇
𝑟2

− 1
𝑎
(𝑒𝜑 ⋅ ̇⃗𝑟)

2

𝑟
(8)

with constants 𝐴 and 𝐵. We insert this into Equation (7) and get

̈𝑟(𝑡) = (𝐴 + 𝐵𝑡)𝑎(𝑡). (9)

Integrating this equation twice gives us

̇𝑟(𝑡) = ̇𝑟(0) + 𝑏0(𝑡)𝐴 + 𝑏1(𝑡)𝐵
𝑟(𝑡) = 𝑟(0) + ̇𝑟(0)𝑡 + 𝑐0(𝑡)𝐴 + 𝑐1(𝑡)𝐵

(10)

with

𝑏0(𝑡) = ∫
𝑡

0
𝑎(𝑠) d𝑠 = −𝑣𝑒 ln(1 −

𝑡
𝜏
)

𝑏𝑛(𝑡) = ∫
𝑡

0
𝑠𝑛𝑎(𝑠) d𝑠 = 𝑏𝑛−1(𝑡)𝜏 −

𝑣𝑒𝑡𝑛

𝑛

𝑐0(𝑡) = ∫
𝑡

0
𝑏0(𝑠) d𝑠 = 𝑏0(𝑡)𝑡 − 𝑏1(𝑡)

𝑐𝑛(𝑡) = ∫
𝑡

0
𝑏𝑛(𝑠) d𝑠 = 𝑐𝑛−1(𝑡)𝜏 −

𝑣𝑒𝑡𝑛+1

𝑛(𝑛 + 1)
.

(11)

The derivations for Equation (11) can be found in Appendix C.

A Derivatives of the Base Vectors
We calculate 𝑒𝜑 more explicitly via



𝑒𝜑 ≔ 𝑒𝑧 × 𝑒𝑟 =
 (1) ( ⃗𝑟 × ̇⃗𝑟) × ⃗𝑟

𝑟‖ ⃗𝑟 × ̇⃗𝑟‖
=

𝑟2 ̇⃗𝑟 − ( ⃗𝑟 ⋅ ̇⃗𝑟) ⃗𝑟

𝑟‖ ⃗𝑟 × ̇⃗𝑟‖
=

̇⃗𝑟 − (𝑒𝑟 ⋅ ̇⃗𝑟)𝑒𝑟
‖𝑒𝑟 × ̇⃗𝑟‖

=
̇⃗𝑟 − (𝑒𝑟 ⋅ ̇⃗𝑟)𝑒𝑟

𝑒𝜑 ⋅ ̇⃗𝑟
(12)

where we have used the triple product expansion and in the last step we used the fact that ‖𝑒1 ×
⃗𝑣‖ = 𝑒2 ⋅ ⃗𝑣 for any vector ⃗𝑣 that has only components in 𝑒1 and 𝑒2 and 𝑒1 ⟂ 𝑒2. Note that

rearranging Equation (12) confirms that the velocity has no 𝑒𝑧-component

̇⃗𝑟 =
 (12)

(𝑒𝑟 ⋅ ̇⃗𝑟)𝑒𝑟 + (𝑒𝜑 ⋅ ̇⃗𝑟)𝑒𝜑. (13)

Another way to calculate the velocity is

̇⃗𝑟 =
d
d𝑡 ⃗𝑟 =

d
d𝑡
(𝑟𝑒𝑟) = ̇𝑟𝑒𝑟 + 𝑟 d

d𝑡
𝑒𝑟. (14)

Looking at Equations (13) and (14) we can also confirm that dd𝑡𝑒𝑟 only points towards 𝑒𝜑
d
d𝑡
𝑒𝑟 =

1
𝑟
(𝑒𝑟 ⋅ ̇⃗𝑟 − ̇𝑟)⏟⏟⏟⏟⏟

=0

𝑒𝑟 +
1
𝑟
(𝑒𝜑 ⋅ ̇⃗𝑟)𝑒𝜑 = 1

𝑟
(𝑒𝜑 ⋅ ̇⃗𝑟)𝑒𝜑. (15)

The (unit-mass) angular momentum ⃗𝑟 × ̇⃗𝑟 changes as

d
d𝑡
( ⃗𝑟 × ̇⃗𝑟) = ̇⃗𝑟 × ̇⃗𝑟⏟

=0

+ ⃗𝑟 × ̈⃗𝑟 = ⃗𝑟 × ̈⃗𝑟 =
 (1)

𝑟 ⃗𝑒𝑟 × ̈⃗𝑟 (16)

and its magnitude changes as

d
d𝑡
‖ ⃗𝑟 × ̇⃗𝑟‖ =

 (1), (12) d
d𝑡
(𝑟𝑒𝜑 ⋅ ̇⃗𝑟) = ̇𝑟𝑒𝜑 ⋅ ̇⃗𝑟 + 𝑟( d

d𝑡
𝑒𝜑) ⋅ ̇⃗𝑟 + 𝑟𝑒𝜑 ⋅ ̈⃗𝑟. (17)

Therefore

d
d𝑡
𝑒𝑧 =

d
d𝑡

⃗𝑟 × ̇⃗𝑟
‖ ⃗𝑟 × ̇⃗𝑟‖

=
 (16), (17) 𝑟𝑒𝑟 × ̈⃗𝑟

𝑟𝑒𝜑 ⋅ ̇⃗𝑟
−

( ̇𝑟𝑒𝜑 ⋅ ̇⃗𝑟 + 𝑟( d
d𝑡𝑒𝜑) ⋅ ̇⃗𝑟 + 𝑟𝑒𝜑 ⋅ ̈⃗𝑟)𝑟𝑒𝑟 × ̇⃗𝑟

(𝑟𝑒𝜑 ⋅ ̇⃗𝑟)
2

=
 (13) 𝑟𝑒𝑟 × ̈⃗𝑟

𝑟𝑒𝜑 ⋅ ̇⃗𝑟
−

( ̇𝑟𝑒𝜑 ⋅ ̇⃗𝑟 + 𝑟( d
d𝑡𝑒𝜑) ⋅ ̇⃗𝑟 + 𝑟𝑒𝜑 ⋅ ̈⃗𝑟)(𝑒𝜑 ⋅ ̇⃗𝑟)

=𝑒𝑧
⏞̂𝑒𝑟 × 𝑒𝜑

𝑟(𝑒𝜑 ⋅ ̇⃗𝑟)
2

=
𝑟𝑒𝑟 × ((𝑒𝜑 ⋅ ̈⃗𝑟)𝑒𝜑 + (𝑒𝑧 ⋅ ̈⃗𝑟)𝑒𝑧)

𝑟𝑒𝜑 ⋅ ̇⃗𝑟
−

( ̇𝑟𝑒𝜑 ⋅ ̇⃗𝑟 + 𝑟( d
d𝑡𝑒𝜑) ⋅ ̇⃗𝑟 + 𝑟𝑒𝜑 ⋅ ̈⃗𝑟)𝑒𝑧
𝑟𝑒𝜑 ⋅ ̇⃗𝑟

=
𝑟(𝑒𝜑 ⋅ ̈⃗𝑟)𝑒𝑧 − 𝑟(𝑒𝑧 ⋅ ̈⃗𝑟)𝑒𝜑 − ( ̇𝑟𝑒𝜑 ⋅ ̇⃗𝑟 + 𝑟( d

d𝑡𝑒𝜑) ⋅ ̇⃗𝑟 + 𝑟𝑒𝜑 ⋅ ̈⃗𝑟)𝑒𝑧
𝑟𝑒𝜑 ⋅ ̇⃗𝑟

=
−𝑟(𝑒𝑧 ⋅ ̈⃗𝑟)𝑒𝜑 − ( ̇𝑟𝑒𝜑 ⋅ ̇⃗𝑟 + 𝑟( d

d𝑡𝑒𝜑) ⋅ ̇⃗𝑟)𝑒𝑧
𝑟𝑒𝜑 ⋅ ̇⃗𝑟

.

(18)

Because 𝑒𝑧 does not change its magnitude, we know that 𝑒𝑧 ⋅ d
d𝑡𝑒𝑧 = 0 and therefore we can infer

from Equation (18) that

d
d𝑡
𝑒𝑧 = −𝑒𝑧 ⋅ ̈⃗𝑟

𝑒𝜑 ⋅ ̇⃗𝑟
𝑒𝜑, (19)



showing that dd𝑡𝑒𝑧 has no 𝑒𝑟-component as well and points solely into the 𝑒𝜑-direction. Due to the
same reason we know that

0 =
 (18)

̇𝑟𝑒𝜑 ⋅ ̇⃗𝑟 + 𝑟( d
d𝑡
𝑒𝜑) ⋅ ̇⃗𝑟

= ̇𝑟𝑒𝜑 ⋅ ̇⃗𝑟 + 𝑟[(𝑒𝑟 ⋅
d
d𝑡
𝑒𝜑)𝑒𝑟 +(𝑒𝑧 ⋅

d
d𝑡
𝑒𝜑)𝑒𝑧] ⋅ [(𝑒𝑟 ⋅ ̇⃗𝑟)𝑒𝑟 + (𝑒𝜑 ⋅ ̇⃗𝑟)𝑒𝜑]

= ̇𝑟𝑒𝜑 ⋅ ̇⃗𝑟 + 𝑟(𝑒𝑟 ⋅
d
d𝑡
𝑒𝜑) (𝑒𝑟 ⋅ ̇⃗𝑟)⏟

= ̇𝑟

= ̇𝑟[𝑒𝜑 ⋅ ̇⃗𝑟 + 𝑟(𝑒𝑟 ⋅
d
d𝑡
𝑒𝜑)]

⟹ 𝑒𝑟 ⋅
d
d𝑡
𝑒𝜑 = −

𝑒𝜑 ⋅ ̇⃗𝑟
𝑟

.

(20)

The 𝑒𝑧-component of dd𝑡𝑒𝜑 can be calculated via

𝑒𝑧 ⋅
d
d𝑡
𝑒𝜑 =

 (1)
𝑒𝑧 ⋅ [(

d
d𝑡
𝑒𝑧)× 𝑒𝑟 + 𝑒𝑧 ×( d

d𝑡
𝑒𝑟)]

= 𝑒𝑧 ⋅ ((
d
d𝑡
𝑒𝑧)× 𝑒𝑟)+ 𝑒𝑧 ⋅ (𝑒𝑧 ×( d

d𝑡
𝑒𝑟))

⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

=
 (19) 𝑒𝑧 ⋅ ̈⃗𝑟

𝑒𝜑 ⋅ ̇⃗𝑟
,

(21)

so overall

d
d𝑡
𝑒𝜑 = (𝑒𝑟 ⋅

d
d𝑡
𝑒𝜑)𝑒𝑟 +(𝑒𝑧 ⋅

d
d𝑡
𝑒𝑧)𝑒𝑧

=
 (20), (21)

−
𝑒𝜑 ⋅ ̇⃗𝑟
𝑟

𝑒𝑟 +
𝑒𝑧 ⋅ ̈⃗𝑟
𝑒𝜑 ⋅ ̇⃗𝑟

𝑒𝑧
(22)

which concludes our derivations of the time derivates of all base vectors □.

B Engine Exhaust Velocity
First our spacecraft has mass 𝑚 and velocity 𝑣. One infinitesimal moment later it will have
accelerated fuel of mass d𝑚 out the back with a relative velocity of −𝑣𝑒, or an absolute velocity 𝑣 −
𝑣𝑒. Due to Newton’s third law the rocket with a new mass of 𝑚−d𝑚 feels a forward acceleration
where it gains the infinitesimal velocity d𝑣, making its new velocity 𝑣 +d𝑣. Do to momentum
conservation we have

𝑚𝑣 = (𝑚−d𝑚)(𝑣 +d𝑣) +d𝑚(𝑣 − 𝑣𝑒)
= 𝑚𝑣 − 𝑣 d𝑚+𝑚d𝑣 − d𝑚d𝑣⏟

≈0

+ 𝑣d𝑚− 𝑣𝑒 d𝑚 (23)

⟹ 𝑣𝑒 d𝑚 = 𝑚d𝑣

⟹ 𝑣𝑒
d𝑚
d𝑡⏟
=𝑅

= 𝑚 d𝑣
d𝑡⏟
=𝑎

⟹ 𝑣𝑒 = 𝑎𝑚
𝑅

= 𝑎𝜏 □.

(24)

C Derivation of the Thrust Integrals and their Relations
We are interested in solving the integrals of the form



𝑏𝑛(𝑡) = ∫
𝑡

0
𝑠𝑛𝑎(𝑠) d𝑠, 𝑐𝑛(𝑡) = ∫

𝑡

0
𝑏𝑛(𝑠) d𝑠 (25)

where 𝑎 is the rocket engine acceleration (5). Through substitution we reach

𝑏𝑛(𝑡) = ∫
𝑡

0
𝑠𝑛𝑎(𝑠) d𝑠 =

 (5), (24) 𝑣𝑒
𝜏
∫

𝑡

0

𝑠𝑛

1 − 𝑠
𝜏
d𝑠 = 𝑣𝑒𝜏𝑛 ∫

𝑡
𝜏

0

𝑥𝑛

1 − 𝑥
d𝑥 = 𝑣𝑒𝜏𝑛𝐼𝑛(

𝑡
𝜏
) (26)

with

𝐼𝑛(𝑟) ≔ ∫
𝑟

0

𝑥𝑛

1 − 𝑥
d𝑥 = ∫

1

1−𝑟

(1 − 𝑥)𝑛

𝑥
d𝑥. (27)

Order 0 can be directly solved

𝐼0(𝑟) = ∫
1

1−𝑟

1
𝑥
d𝑥 = ln(1) − ln(1 − 𝑟) = − ln(1 − 𝑟) (28)

which inserted into Equation (26) gives us the desired result 𝑏0(𝑡) = −𝑣𝑒 ln(1 − 𝑡
𝜏 ). For orders 𝑛 >

0 we find the recursive relationship

𝐼𝑛(𝑟) − 𝐼𝑛−1(𝑟) = −𝑟𝑛

𝑛
. (29)

Proof:

𝐼𝑛(𝑟) = ∫
1

1−𝑟

(1 − 𝑥)𝑛

𝑥
d𝑥 =

 (32)
∑
𝑛

𝑘=0
(𝑛
𝑘
)∫

1

1−𝑟

(−𝑥)𝑘

𝑥
d𝑥

= − ln(1 − 𝑟) +∑
𝑛

𝑘=1
(𝑛
𝑘
)(−1)𝑘 ∫

1

1−𝑟
𝑥𝑘−1 d𝑥

= − ln(1 − 𝑟) +∑
𝑛

𝑘=1
(𝑛
𝑘
)(−1)

𝑘

𝑘
(1 − (1 − 𝑟)𝑘)

(30)

𝐼𝑛(𝑟) − 𝐼𝑛−1(𝑟) = ∑
𝑛−1

𝑘=1
((𝑛

𝑘
) − (𝑛 − 1

𝑘
))(−1)

𝑘

𝑘
(1 − (1 − 𝑟)𝑘) + (−1)𝑛

𝑛
(1 − (1 − 𝑟)𝑛)

=
 (33)

∑
𝑛−1

𝑘=0
(𝑛
𝑘
)(−1)

𝑘

𝑛
(1 − (1 − 𝑟)𝑘) + (−1)𝑛

𝑛
(1 − (1 − 𝑟)𝑛)

= 1
𝑛
∑
𝑛

𝑘=0
(𝑛
𝑘
)(−1)𝑘(1 − (1 − 𝑟)𝑘)

= −1
𝑛
∑
𝑛

𝑘=0
(𝑛
𝑘
)(𝑟 − 1)𝑘1𝑛−𝑘

=
 (32)

−𝑟𝑛

𝑛
,

(31)

where we have used

(𝑎 + 𝑏)𝑛 = ∑
𝑛

𝑘=0
(𝑛
𝑘
)𝑎𝑘𝑏𝑛−𝑘 (32)

and



1
𝑘
((𝑛

𝑘
) − (𝑛 − 1

𝑘
)) = 1

𝑘
( 𝑛!
𝑘!(𝑛 − 𝑘)!

− (𝑛 − 1)!
𝑘!(𝑛 − 1 − 𝑘)!

)

= 1
𝑘
( 𝑛!
𝑘!(𝑛 − 𝑘)!

− 𝑛!
𝑘!(𝑛 − 𝑘)!

𝑛 − 𝑘
𝑛

)

= 1
𝑘
(𝑛
𝑘
)(1 − 𝑛 − 𝑘

𝑛
)

= 1
𝑛
(𝑛
𝑘
).

(33)

We use this recursive relationship and apply it to our first type of thrust integral (26)

𝑏𝑛(𝑡) = 𝑣𝑒𝜏𝑛𝐼𝑛(
𝑡
𝜏
) =

 (29)
𝑣𝑒𝜏𝑛(𝐼𝑛−1(

𝑡
𝜏
) − 1

𝑛
𝑡𝑛

𝜏𝑛
) = 𝑣𝑒𝜏𝑛−1𝐼𝑛−1(

𝑡
𝜏
)𝜏 − 𝑣𝑒𝑡𝑛

𝑛

= 𝑏𝑛−1(𝑡)𝜏 −
𝑣𝑒𝑡𝑛

𝑛
.

(34)

Now we take a look at

𝑐𝑛(𝑡) =
 (25)

∫
𝑡

0
𝑏𝑛(𝑠) d𝑠 =

 (26)
𝑣𝑒𝜏𝑛 ∫

𝑡

0
𝐼𝑛(

𝑠
𝜏
)d𝑠 = 𝑣𝑒𝜏𝑛+1 ∫

𝑡
𝜏

0
𝐼𝑛(𝑥) d𝑥. (35)

Using partial integration we rewrite the integral as

∫
𝑟

0
𝐼𝑛(𝑥) d𝑥 = 𝐼𝑛(𝑟)𝑟 −∫

𝑟

0
𝑥𝐼𝑛′(𝑥) d𝑥 =

 (27)
𝐼𝑛(𝑟)𝑟 −∫

𝑟

0
𝑥 𝑥𝑛

1 − 𝑥
d𝑥

= 𝐼𝑛(𝑟)𝑟 − 𝐼𝑛+1(𝑟).
(36)

We insert this into the second type of thrust integral (35) and get

𝑐𝑛(𝑡) = 𝑣𝑒𝜏𝑛+1𝐼𝑛(
𝑡
𝜏
) 𝑡
𝜏
− 𝑣𝑒𝜏𝑛+1𝐼𝑛+1(

𝑡
𝜏
) =

 (26)
𝑏𝑛(𝑡)𝑡 − 𝑏𝑛+1(𝑡). (37)

Applying this to the 𝑛 = 0 case gives us 𝑐0(𝑡) = 𝑏0(𝑡)𝑡 − 𝑏1(𝑡). Lastly for the 𝑛 > 0 case we insert
the first recursive relationship (34) into the second type of thrust integral which yields

𝑐𝑛(𝑡) =
 (25)

∫
𝑡

0
𝑏𝑛(𝑠) d𝑠 =

 (34)
𝜏 ∫

𝑡

0
𝑏𝑛−1(𝑠) d𝑠 −

𝑣𝑒
𝑛
∫

𝑡

0
𝑠𝑛 d𝑠 = 𝜏𝑐𝑛−1(𝑡) −

𝑣𝑒
𝑛(𝑛 + 1)

𝑡𝑛+1 (38)

which finally concludes our derivations for this chapter □.

D Inserting the Results
When we know our target state 𝑟(𝑡), ̇𝑟(𝑡), the time 𝑡 at which we should reach it, and the current
state 𝑟(0), ̇𝑟(0) then we can calculate the thrust integrals 𝑏0(𝑡), 𝑏1(𝑡), 𝑐0(𝑡), 𝑐1(𝑡) and with those we
can calculate 𝐴 and 𝐵 via the equations

̇𝑟(𝑡) = 𝐴𝑏0(𝑡) + 𝐵𝑏1(𝑡) + ̇𝑟(0)
𝑟(𝑡) = 𝐴𝑐0(𝑡) + 𝐵𝑐1(𝑡) + ̇𝑟(0)𝑡 + 𝑟(0).

(39)



𝐵 = 1
𝑏1(𝑡)

( ̇𝑟(𝑡) − 𝐴𝑏0(𝑡) − ̇𝑟(0))

⟹ 𝐴𝑏1(𝑡)𝑐0(𝑡) + ( ̇𝑟(𝑡) − 𝐴𝑏0(𝑡) − ̇𝑟(0))𝑐1(𝑡) = 𝑏1(𝑡)(𝑟(𝑡) − ̇𝑟(0)𝑡 − 𝑟(0))
⟺ 𝐴(𝑏1(𝑡)𝑐0(𝑡) − 𝑏0(𝑡)𝑐1(𝑡)) = 𝑏1(𝑡)(𝑟(𝑡) − ̇𝑟(0)𝑡 − 𝑟(0)) + ( ̇𝑟(0) − ̇𝑟(𝑡))𝑐1(𝑡)

⟺ 𝐴 = 𝑏1(𝑡)(𝑟(𝑡) − ̇𝑟(0)𝑡 − 𝑟(0)) + ( ̇𝑟(0) − ̇𝑟(𝑡))𝑐1(𝑡)
𝑏1(𝑡)𝑐0(𝑡) − 𝑏0(𝑡)𝑐1(𝑡)

.

(40)

E The Equation in Question
The unit vector �̂�𝑚 points towards our target and it is constant, i.e. dd𝑡�̂�𝑚 = 0. Therefore
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